IBM Advances Predictive Analytics for Decision Management

At its Business Analytics Analyst Summit (Twitter: #IBMBAS12) this week, IBM unveiled its new release of analytics software for decision management. Over the last 25 years decision support systems have transformed into decision management, in which analytics, rules and optimization methods help organizations use information to guide optimal outcomes. IBM has experience and technology in these areas, most of it acquired, to apply to specific organizational needs in vertical industries. In addition, IBM has advanced its information management technologies to support big data and predictive analytics in operational environments. Its stream- and event-processing technology helps speed routing and analysis of information across business processes. Each of these are critical for supporting decision management technology needs for business processes.

Operational decision management software automates repeatable tasks in business processes and also deals with unique situations in which the right responses are not as certain. IBM uses business rules for processing what is known and what can be managed through workflow. Rules may deal with a range of situations where specific conformance to compliance requirements and applied analytics can flow through predetermined steps. IBM’s Analytical Decision Management uses predictive models that use situational variables such as customer responses  to provide analysis to direct actions. Predictive models can minimize risk, optimize customer interactions and optimize responses to situations. IBM has combined its models into a set of services that can be orchestrated into operational activities and business processes. This analytical approach addresses the limitations of business process management, which attempts to map activities into a predefined order without having the ability to embed what I call situational intelligence into the business process. IBM’s environment enables organizations to focus more on operations or analytics as they choose.

This platform of decision services and configurable applications can operate in many business areas, including insurance claims, financial services transactions and customer service processes. IBM also is using its decision management offering to provide prebuilt application environments it calls Signature Solutions, which reduce the time and skills required to get started for specific purposes. These solutions are available initially in customer, finance and fraud areas, but the same approach can be applied to many industries, and it should help IBM win more opportunities to deploy its solutions and help organizations optimize business through decision management. In fact our benchmark research in predictive analytics found a similar pattern to future needs of the technology. IBM is investing significantly in decision management and has an aggressive product roadmap to make it easier to define and improve existing deployments by editing and refining existing work.

IBM’s work to advance business process decisions should be applauded. However, based on its presentations and approach in communications at the analyst summit, I think it is offering too much high-level information on concepts and theory and not enough specifics on use-case details in real business processes, on the capabilities its software provides and how it is integrated into existing applications and systems. For example, a customer service organization likely will not use IBM’s decision management software for customer interactions by itself; it will have to work with applications from other providers that are used in agent desktop environments. IBM should give more specific examples on its partnerships and integration points with details so prospects will see it as an evolutionary approach and not a transformational one that requires a complete restart of processes and applications. Our benchmark research found that the integration into information architectures was the highest obstacle in 55 percent of organizations in use of predictive analytics that IBM helps address with its offering. It also should focus on guiding the actions more than the decisions, as improvements in the accuracy of actions will have a much larger payoff for business.

If you have not investigated at how analytics, especially predictive ones, can help improve decision-making within business processes, you should look at IBM’s decision management offerings, which can help operationally and analytically to drive better outcomes.


Mark Smith – CEO & Chief Research Officer

2 thoughts on “IBM Advances Predictive Analytics for Decision Management

  1. Hi Mark – great article. I agree we need to focus more on real world examples to help people understand the value of decision management technology. The experiences I’ve had with this technology have been in the Insurance and Retail space (ie. next-best-offer) – I’m looking forward to seeing how it translates into other industries as well.

  2. […] in Analytics, Data Mining, Decision Management The last two weeks have been very focused on analytics, especially predictive analytics. First I attended the IBM Analyst Summit where they formally launched their big new focus on Decision Management (see my blog series here). This event was a big deal, I believe, because it showed IBM’s increased focus on Decision Management – moving from having some solid products (WebSphere Operational Decision Management and SPSS Analytical Decision Management) to having a core go to market strategy focused on Decision Management. IBM’s increased focus in this area, their increasing integration of their products and marketing to deliver Decision Management, and their investment in the whole range of technologies for Decision Management all point to the growing importance of Decision Management as a vehicle for analytics and analytics-led business innovation. Other posts on the IBM event included this one from Neil Raden at Constellation (who wrote Smart (Enough) Systems with me) and this one from Mark at Ventana Research. […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s