KXEN Provides Good Enough Modeling for Predicting Business Outcomes

Predictive analytics in an inherently difficult task and often takes specialized skills. While not easy, the business results of predictive analytics can be significant. 68% of companies say they use predictive analytics to create competitive advantage while 55% say that they increase revenue. KXEN is a software company that specializes in making predictive analytics easier to use by automating predictive analytic processes and some data preparation tasks. Like other predictive analytics companies, KXEN targets uses cases in risk and fraud prevention, operations and customer service, but given its end-user focus, it is natural that the company seems to be finding a niche on the customer-facing side of business in areas such as sales operations and marketing.

vr_predanalytics_benifits_of_predictive_analyticsThe key to KXEN’s strategy is what might be called a commodity or good enough approach to modeling. That is, end users do not need to know advanced statistics to use InfiniteInsight, the company’s flagship platform. The user feeds data into the KXEN engine, and the system dynamically creates and validate models. One selling point for the company is that the engine is able to ingest hundreds of thousands of variables and automatically sort through the data set to find the right predictor variables. In a traditional analytic process, by contrast, a trained statistician would define the variables to be used in the model and often go through a data reduction process prior to building a predictive model. InfiniteInsight, avoids this step entirely. To test the model, it uses only half of the data to build the model, and the other half of the data to validate it. It avoids over-fitting by cross-validating the original training set with the validation set.

The variables with the highest predictive power according to the KXEN algorithms are the ones that are subsequently used in the actual production system. For instance, consider a next-best-offer prediction that includes opening a new checking account, offering a new credit card or offering a home equity line of credit. Each product offer would be modeled separately and may have different drivers. When a customer reaches the company through the call center or a website, each product will be scored according to the customer-related variables that are most predictive of that offer. If a person has just been married, that may be a better predictor for opening a new checking account than if the person just bought a new house, which may suggest a home equity line of credit. InfiniteInsight integrates with third-party business rules engines that are a necessity for almost any type of real-time operational analytic system.

As demand for analytics becomes more important to organizations, application vendors can choose to build analytics into their applications or strike partnerships with companies such as KXEN to provide the necessary intelligence. Such partnerships represent a big opportunity for BI and analytics vendors since emerging cloud-based companies often focus on applications themselves and not analytics. For example, KXEN partners with salesforce.com to provide predictive applications on the salesforce.com AppExchange. At the same time, KXEN has its own Cloud Prediction platform that offers applications for predictive offers (also called next best offer), lead scoring, retention and case routing. This hedge is the smart play. Our benchmark research into next-generation business intelligence shows that companies are split on how they will deploy their next generation of systems: 38% said it will be part of a specific business intelligence system, 36% said it will be driven through Microsoft Office, and 34% said it will be embedded into the application. With the rise in mobile intelligence and the importance of operational intelligence in today’s organizations, it will be interesting to see how these numbers change in our next generation business analytics research, which we will conduct in 2013.

The latest release of KXEN’s flagship InfiniteInsight, version 6, which became generally available in March, adds capabilities for social intelligence as well as campaign intelligence for marketers. For social intelligence, version 6 provides capabilities to explore social graphs to identify connections among people and find top influencers in a category. It can also put social attributes into a predictive model for purposes such as predicting social media paths to increase the effectiveness of a viral campaign. Another product called Genius enables point-and-click campaign modeling so marketers can run analytics on just about any size of campaign. This is becoming important in the world of digital marketing since smaller, more targeted campaigns are needed to lessen to the noise in the consumer’s digital environment. It used to be that only large direct mail campaigns would get a unique model, and that model had to be built and interpreted by trained statisticians. Once the model was optimized, it would then be translated into database language, the database would be scored and the target prospects selected. This took time and high-priced talent. Today, many models are needed in a much shorter timeframe. Commodity modeling approaches such as Genius help marketers quickly optimize their campaigns without having to involve a statistician. Such time-to-value is a key buying criterion is today’s fast-paced markets and for KXEN’s client base of more than 400 companies of various sizes.

This week the company announced location intelligence as a native feature of its InfiniteInsight platform. Location awareness enables the system to understand the location of a particular person and use this information to help predict the most relevant offers to that person at that time and place. Using the location technology, the company also offers co-location and geographic path analysis techniques by which the location intelligence can look at similar events occurring within a certain area or look at a time sequence of events occurring in multiple places. Such techniques can help, for example, to root out crime or provide real-time route optimization during heavy traffic times. Our benchmark research on location analytics, that we are completing, suggests that location information has been an underappreciated source of intelligence, and while it is beginning to gain some early traction, people’s lack of location analytic skills is still an obstacle.

Predictive analytic models are only as good as the quality of the input and therefore data pre-processing is a key consideration for predictive analytics. Our benchmark research into business technology innovation shows that data preparation and quality are critical challenges and time-consuming activities impacting analysts in 42 percent of organizations. KXEN has basic tools for data preparation such as checking for missing variables, classifying variable type, encoding of continuous variables and outlier detection and handling. Its social graph capabilities can also link people with many identities, though their ability to clean the data set and merge these identities automatically is still unclear. Data preparation is an area where other tools still may be needed since they often include more advanced data preparation capabilities.

vr_bti_br_technology_innovation_prioritiesAnalytics was ranked as the top technology innovation priority by 39% of participants in that research, more than twice as many cited the second and third highest priorities of collaboration and mobile technology. In addition the most critical capability to satisfy business analytics is applying predictive analytics in almost half (49%) of organizations. Analytics is a broad category, and predictive analytics is perhaps the most complicated in terms of systems and organizational integration.  KXEN has developed an approach that automates much of this complex world of predictive analytics. Its advantages include providing organizations with a common language framework for understanding predictive analytics.

The primary arguments against KXEN’s approach are that the quality of its models may not be as strong as those done by a trained statistician and that the breadth of use is not as wide as some of its competitors attain. While these arguments have validity in certain circumstances, we note that lack of skills is the primary barrier to dissemination of predictive analytics. In many situations, commodity models that address this skills gap at the front line of the organization are better than current approach of randomness and gut-feel.


Ventana Research

Cornerstone Doubles Down on Talent Management

Cornerstone OnDemand is a vendor of cloud-based systems for talent management. In February I covered the launch of its Cornerstone for Salesforce application and its announcement of annual earnings. Cornerstone has approximately 1,300 clients and 11 million users in companies with on average 9,000 employees. The company released its financial results for the first quarter of 2013 in May, showing year-over-year revenue growth of 57 percent, to $37.7million. This is an all-time quarterly high for the company.

I recently attended the analyst day at Cornerstone Convergence 2013, its user conference. The theme was “reimagining work,” which was a reference to their new user interface that is supposed to deliver a more consumer application like experience to customers.  Overall throughout the conference, Cornerstone focused on promoting the value of delivering a best-of-breed global talent management solution. The company is insisting on its specialization in the market at a time when many vendors, such as Workday, SumTotal, SAP SuccessFactors and Oracle Taleo, are going beyond talent management to offer broader platforms for human capital management (HCM).  While Cornerstone has a strong market presence in talent management and plenty of room for growth, I think eventually they will need to broaden beyond talent management to offer core human resources management as well; this will occur because competitors will eventually offer enough value here to make this a necessity to avoid losing business they do not wish to.

Three executives – CEO Adam Miller, Vincent Belliveau, SVP & GM for EMEA, and Frank Ricciardi, VP & GM for APAC – discussed how they intend to execute their parts of this strategy for the year. They spoke of expanding Cornerstone’s direct sales presence in Asia and Europe to compete there with Oracle and SAP. Cornerstone is also expanding its network of integration partners – one of whom, Appirio, is a major integrator for it in the North American market. Presently Cornerstone is implementing approximately one-third of its sales through integration partners and the rest directly through Cornerstone’s own professional services. In Europe part of the strategy is to use the poor economy against large ERP vendors by talking to customers about ROI and moving from expensive ERP systems to its purely cloud-based talent management system. The question looking ahead will be whether Oracle and SAP can compete on price with their cloud-based talent management products or if they opt to maintain the status quo on pricing and sales strategy; the latter would leave to Cornerstone the middle market, which amounts to the majority of Europe.

At this year’s Convergence event, Cornerstone spokespeople demonstrated products and made several announcements meant to further execution of the best-of-breed strategy for talent management. The most significant release at the show was an update to the user interface, which CEO Miller demonstrated. Billed as being like the vr_bti_br_whats_important_in_choosing_technologyfront end to a consumer Internet application, the revised user experience presents a simple set of navigation elements on the screens, reducing the visual complexity compared with previous versions, making the experience easier to consume. Much of the look, feel and way of interacting with the revised interface resembles a Google application, with an embedded predictive search feature; this is something that other application vendors in HCM have adopted as well. In addition, Cornerstone has gotten into gamification with the new feedback section of the Performance application, which allows users who are giving feedback to award “trophies” for things (such as a genius idea) to another employee and which translate into a points system. Currently Cornerstone does not have an application to manage the points system, a hole it will have to fill to make this a viable application; Miller said the company will do that. Overall I expect this revision of the user interface to be well-received by the market, as it incorporates many current consumer-grade elements. I also note that usability is the most important purchase evaluation consideration for participants (chosen by 64%) in our research on business technology innovation. I believe Cornerstone is moving in the right direction to remain competitive in this regard.

In other announcements, Cornerstone released updates to several applications, including Cornerstone Connect, a social networking application. To Cornerstone Connect it has added activity streams, which are visible in each application a customer purchases (such as learning, performance management or recruiting), and the ability to embed and share content with other users from within the vr_socialcollab_source_of_funding_for_social_collabactivity stream. But the major change to this application is the addition of collaborative project management functionality.  This is something that, while interesting, may prove to be problematic, as HR traditionally does not own the organization’s project management applications, and there are many successful project management applications on the market today. Cornerstone claims that many of its customers have been asking for this kind of functionality, so time will tell whether there is a true market for this kind of application within the HR buying community. Our benchmark research on social collaboration and human capital management shows that less than half (45%) of the funding for social collaboration projects is coming from HR budgets, and other aspects of the business are driving new technology investments.

Cornerstone also announced updates for Recruiting Cloud, its newest cloud application, to improve its functionality. But several of the updates are already table stakes for any enterprise recruiting system, such as interview management capabilities, integration with a background-check provider, cost tracking for job requisitions and basic social networking capabilities. The most interesting feature in this release is the embedded video interviewing from HireVue; in a recent posting I outlined HireVue’s market-leading capabilities in video interviewing. Only about 10 percent of Cornerstone’s  customers currently use this application, but if they continue to add improvements with differentiating features like this, the number should increase.

Cornerstone also released an updated version of its mobile application with native apps for iOS and Android devices. The mobile application update is effective for its breadth and usability – it offers easy-to-use view and edit features for most of the Cornerstone applications including the core profile, learning, performance and recruiting applications. However, customers want integrated mobile functionality for talent analytics, which this mobile application lacks. Analytics is an area in which Cornerstone generally needs improvement. Presently it has a technology partnership with Visor, which will help customers sync databases to a third-party analytics tool. Other competitors have embedded analytics with robust capabilities along with prebuilt dashboards and performance indicators that can be seen on mobile devices as well.

One of Cornerstone’s partnerships epitomizes both the success of and the issues with its strategy of being strictly a best-of-breed talent management vendor: its relationship with Workday. Here it has both a good partner and a channel to sell its talent management products, some of which Workday does not presently offer, but also a competitor that offers a partial talent management system and a core HRMS. Cornerstone said that it does not plan to build an HRMS itself, but some customers may not want to pay two vendors for something they think one should provide; today’s market has a number of complete HCM platforms.

Overall Cornerstone showed several promising product enhancements and business investments that will keep it competitive in its core market of talent management. The company will face strong competition from vendors of broader solutions in human capital management, but its leaders understand its place in the market; organizations seeking a talent management system in the coming year should evaluate Cornerstone OnDemand.


Stephan Millard

VP & Research Director